from1(X) -> cons2(X, n__from1(n__s1(X)))
sel2(0, cons2(X, Y)) -> X
sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(X) -> X
↳ QTRS
↳ DependencyPairsProof
from1(X) -> cons2(X, n__from1(n__s1(X)))
sel2(0, cons2(X, Y)) -> X
sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(X) -> X
ACTIVATE1(n__from1(X)) -> FROM1(activate1(X))
ACTIVATE1(n__s1(X)) -> S1(activate1(X))
SEL2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)
SEL2(s1(X), cons2(Y, Z)) -> SEL2(X, activate1(Z))
ACTIVATE1(n__from1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
from1(X) -> cons2(X, n__from1(n__s1(X)))
sel2(0, cons2(X, Y)) -> X
sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(X) -> X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
ACTIVATE1(n__from1(X)) -> FROM1(activate1(X))
ACTIVATE1(n__s1(X)) -> S1(activate1(X))
SEL2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)
SEL2(s1(X), cons2(Y, Z)) -> SEL2(X, activate1(Z))
ACTIVATE1(n__from1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
from1(X) -> cons2(X, n__from1(n__s1(X)))
sel2(0, cons2(X, Y)) -> X
sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(X) -> X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
ACTIVATE1(n__from1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
from1(X) -> cons2(X, n__from1(n__s1(X)))
sel2(0, cons2(X, Y)) -> X
sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(X) -> X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVATE1(n__from1(X)) -> ACTIVATE1(X)
Used ordering: Polynomial interpretation [21]:
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
POL(ACTIVATE1(x1)) = x1
POL(n__from1(x1)) = 1 + 2·x1
POL(n__s1(x1)) = 3·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
from1(X) -> cons2(X, n__from1(n__s1(X)))
sel2(0, cons2(X, Y)) -> X
sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(X) -> X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
POL(ACTIVATE1(x1)) = 2·x1
POL(n__s1(x1)) = 1 + 2·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
from1(X) -> cons2(X, n__from1(n__s1(X)))
sel2(0, cons2(X, Y)) -> X
sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(X) -> X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
SEL2(s1(X), cons2(Y, Z)) -> SEL2(X, activate1(Z))
from1(X) -> cons2(X, n__from1(n__s1(X)))
sel2(0, cons2(X, Y)) -> X
sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(X) -> X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
SEL2(s1(X), cons2(Y, Z)) -> SEL2(X, activate1(Z))
POL(SEL2(x1, x2)) = 2·x1
POL(activate1(x1)) = 0
POL(cons2(x1, x2)) = 0
POL(from1(x1)) = 0
POL(n__from1(x1)) = 0
POL(n__s1(x1)) = 0
POL(s1(x1)) = 3 + x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
from1(X) -> cons2(X, n__from1(n__s1(X)))
sel2(0, cons2(X, Y)) -> X
sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(X) -> X